2.3.1. Traducere numere întregi de la un sistem la altul număr
Este posibil să se formuleze un algoritm de traducere întregi p din sistem cu o bază în q de bază:
1. Baza noului sistem număr să-și exprime cifrele inițiale ale sistemului numărul și toate acțiunile ulterioare efectuate în notația originală.
2. efectua Consecvent împărțirea numărului și a primit la fel de mult ca fiind private bazate pe noul sistem număr, atâta timp cât vom obține un coeficient mai mic decât împărțitorul.
3. Aceste reziduuri, care sunt cifrele noului sistem de număr, aliniate cu alfabetul noului sistem număr.
4. Asigurați-vă numărul în noul sistem de numerotare, scriindu-l din ultimul reziduu.
Exemplul 2.12. Conversia număr zecimal 17310 în notație octal:
Obținem = 36310 1011010112
2.3.2. Traducerea numerelor fracționare de la un sistem la altul număr
Algoritmul de traducere poate fi formulată cu o p bază adecvată fracție într-o fracțiune cu q bază:
1. Baza noului sistem număr să-și exprime cifrele inițiale ale sistemului numărul și toate acțiunile ulterioare efectuate în notația originală.
2. Secvențial înmulțirea acest număr și fracțiunile obținute lucrări pe baza noului sistem, atâta timp cât produsul din partea fracționară devine zero, este atins sau o precizie de reprezentare numărul necesar.
3. lucrări rezultată partea întreagă cifre sunt numere în noua notație, aliniate cu radix nou alfabet.
4. Creați o parte fracționară a numărului în noua notație, din moment ce întreaga parte a primei piese.
Exemplul 2.17. Traduceți numărul 0.6562510 o valoare octal.
Evident, acest proces poate continua la nesfârșit, oferind tot mai multe personaje noi în imaginea echivalentul binar de 0.710. Deci, în patru etape, vom obține numărul 0.10112. iar numărul 0.10110012 în șapte trepte. care este o reprezentare mai exactă a numărului 0,710 în sistem binar, etc. Acest proces fără sfârșit se termină la un moment dat, atunci când constată că vom obține precizia necesară a numărului.
2.3.3. numere arbitrare de traducere
numere arbitrare de traducere, adică Numerele care conțin întreg și părți fracționare, se realizează în două etape. Separat, tradus întreaga parte, separat - fracționată. În numărul de intrare finală partea întreagă obținut este separat prin punctul fracționar (dot).
Exemplul 2.20. Traduceți numărul 17.2510 în sistem binar.
Traducem partea întreagă:
Traducem partea fracționară:
Exemplul 2.21. Traduceți numărul 124.2510 la sistemul octal.
Traducem partea întreagă:
Traducem partea fracționară:
2.3.4. Numerele de traducere ale sistemului de bază cu numărul 2 într-un sistem numeric cu baza 2 n și înapoi
Traducere numere întregi. Dacă sistemul de numere q ary substrat este o putere a lui 2, numărul de transfer de sistem de numerație-q ary în 2-ary și din spate se poate realiza prin mai multe reguli simple. La număr întreg număr binar scris în radix q = 2 n. trebuie să:
1. Un număr binar rupt la dreapta la stânga în grupul de n cifre fiecare.
2. În cazul în care un este mai mic de n biți, atunci acesta trebuie să fie completate cu zerouri la stânga numărului dorit de cifre în stânga ultimului grup.
3. Luați în considerare fiecare grup ca numărul binar de n biți și cifra sa de scriere corespunzătoare din radix q = 2 n.
Exemplul 2.22. Numărul 1011000010001100102 traduce o valoare octal.
Împărțiți numărul de la dreapta la stânga pe triada și sub fiecare dintre ele scrie un număr octal:
Obținem reprezentarea octal a numărului inițial: 5410628.
Exemplul 2.23. Numărul 10000000001111100001112 traduce în notație hexazecimală.
Împărțiți numărul de la dreapta la stânga pe notebook-ul și sub fiecare dintre ele scrie cifra hexazecimală corespunzătoare:
Obținem reprezentarea hexazecimală a numărului inițial: 200F8716.
Traducerea numerelor fracționare. Pentru număr binar fracționar scrise în radix q = 2 n. trebuie să:
1. Numărul binar de la stânga la dreapta pauză în grupuri de câte n cifre fiecare.
2. În cazul în care acesta din urmă este mai mică decât grupul din dreapta de n biți, atunci acesta trebuie să fie completate cu zerouri la numărul necesar de biți.
3. Luați în considerare fiecare grup ca numărul binar de n biți și cifra sa de scriere corespunzătoare din radix q = 2 n.
Exemplul 2.24. Numărul 0.101100012 traduce o valoare octal.
Împărțiți numărul de la stânga la dreapta pe triada și sub fiecare dintre ele scrie un număr octal:
Obținem reprezentarea octal a numărului inițial: 0.5428.
Exemplul 2.25. Numărul 0.1000000000112 traduce în notație hexazecimală. Împărțiți numărul de la stânga la dreapta pe notebook-ul și sub fiecare dintre ele scrie cifra hexazecimală corespunzătoare:
Obținem reprezentarea hexazecimală a numărului inițial: 0.80316
Traducere de numere arbitrare. Pentru un număr binar arbitrar scris în radix q = 2 n. trebuie să:
1. Întreaga parte a numărului binar de la dreapta la pauză la stânga, și fracționată - de la stânga la dreapta în grupuri de câte n cifre.
2. Dacă în trecut stânga și / sau dreapta grupuri este mai mic de n biți, acestea trebuie să fie completate de pe stânga și / sau dreapta cu zerouri la numărul necesar de cifre;
3. Luați în considerare fiecare grup ca numărul n biți binar și scriere cifre ei corespunzătoare în radix q = 2 n
Exemplul 2.26. Numărul 111,100,101.01112 traduce o valoare octal.
Se împarte întreg și părți fracționare ale triadei pe și sub fiecare dintre ele scrie un număr octal:
Obținem reprezentarea octal a numerelor originale: 745.348.
Exemplul 2.27. Numărul 11,101,001,000.110100102 traduce în notație hexazecimală.
Împărțiți întreg și porțiunea fracționară a numărului în carte, și sub fiecare dintre ele scrie cifra hexazecimală corespunzătoare:
Obținem reprezentarea hexazecimală a numărului inițial: 748, D216.
Numerele de traducere ale sistemelor numerice cu q = 2n de bază în sistem binar. Pentru un număr arbitrar scris în radix q = 2 n. convertite în sistem binar, este necesar ca fiecare număr cifră să o înlocuiască cu un sistem binar număr echivalent n cifre.
Exemplul 2.28. Traduceți 4AS3516 număr hexazecimal într-un sistem binar număr.
Conform algoritmului:
Sarcini pentru exercitarea independentă (răspunsuri)
2.38. Completați tabelul, în care fiecare rând este același număr întreg trebuie înregistrate în diferite sisteme numerice.
2.39. Completați în tabel, în care fiecare rând este același număr fracționară trebuie să fie înregistrate în diferite sisteme de numerație.
2.40. Completați tabelul, în cazul în care fiecare rând este același număr arbitrar (numărul poate include atât întreg și partea fracționară) trebuie înregistrate în diferite sisteme numerice.
Contactați-ne: 150057, Yaroslavl, etc Podvoisky, 11 ,.