„Dacă nici numărul și natura, nimic
cel existent nu le-ar înțelege
de la sine sau în relațiile sale cu alte
lucruri. Puterea numerelor se manifestă în toate
fapte și gânduri de oameni din toate meserii și muzică "
Pitagoreice Philolaus, 5. BC. e.
Numărul este unul dintre conceptele de bază ale matematicii. Conceptul de dezvoltare, în strânsă legătură cu variabilele de studiu; Această relație persistă astăzi. În toate domeniile matematicii moderne trebuie să ia în considerare valori diferite și numere de utilizare
Există mai multe definiții ale conceptului de „număr“.
Primul număr de identificare științifică dat de Euclid în „elemente“ lui, pe care se pare că a moștenit de la compatriotul său Evdoksa Knidos (aproximativ 408 - 355 ien ...): „Unitatea este faptul că, în conformitate cu ceea ce fiecare dintre existente lucrurile numit unul. numărul este setul de unități pliate. " El a definit conceptul de număr și matematician român Magnițki în „aritmetică“ lui (1703).
Chiar înainte de Euclid, Aristotel a dat această definiție: „Un număr este setat, care este măsurată printr-o unitate.“
Din cuvintele filozofului grec Iamblichus, Thales are - stramosul filozofiei materialiste spontan greacă - a învățat că „numărul este sistemul de unități.“ Această definiție a fost cunoscută de Pitagora.
În „aritmetică generală“ (1707), marele engleză fizician, inginer, astronom și matematician Isaak Nyuton a scris: „Sub numărul de noi zumevaem podra- nu atât de multe unități ca o relație abstractă a unor cantități la o altă cantitate de același tip, luate . numărul per unitate este de trei feluri: întreg, întreg fracționată și irațional este ceea ce este măsurat de către unitatea; - o parte fracționată a unei unități multiple, irațional - numerele nu sunt proporționale cu unitatea „..
Mariupol nostru matematician S.F.Klyuykov, de asemenea, a contribuit la definirea numerelor „- sunt modele matematice ale lumii reale, inventate de om pentru cunoștințele sale.“ De asemenea, el a contribuit la numerele de clasificare tradiționale din așa-numitul „număr funcțional“, referindu-se la faptul că lumea este, de obicei, un nume de funcție. Mai multe detalii despre acest lucru este stabilit în capitolul 9.
Conceptul de „număr natural“, în sensul modern sa bucurat în mod constant un matematician francez remarcabil, filozof, pedagog D'Alembert (1717-1783 gg.).
Ideea inițială a numărului apărut în epoca de piatră, trecerea de la o simpla adunare de alimente pentru producția sa activă de circa 100 a.Chr. e. numeric copilarie dificil și încet vine în folosință. Omul timpuriu a fost departe de gândire abstractă, suficient ca el a inventat „un“ număr unic și „doi“. Suma rămasă pentru a rămas incertă și uniți în conceptul de „o mulțime.“
Creșterea producției de alimente, se adaugă obiecte care necesare pentru a fi luate în considerare în viața de zi cu zi, și, prin urmare, să vină cu numere noi, „trei“, „patru“. Pentru o lungă perioadă de timp limita de cunoștințe a fost numărul „șapte“.
Despre neînțeles a spus că această carte este „o enigmă“ vraci în basmele date pentru pacient, „șapte noduri cu plante aromatice, care a trebuit să insiste pe șapte ape în termen de șapte zile și să ia în fiecare zi, timp de șapte linguri.“
Exploreaza lumea devine mai complexă nevoie de număr nou. Așa că am ajuns până la noua limită. Ei au devenit numărul 40. sume exorbitante de simulate enorme în acele zile numărul „patruzeci de patruzeci de ori“, egal cu 1600.
Mai târziu, când numărul „patruzeci“ nu mai este o limită, ea a jucat un rol important în metrologie rus ca baza unui sistem de măsuri: PUD a fost de 40 de lire sterline, baril-sorokovke - patruzeci și găleți, etc.
De mare interes este istoria numărului „șaizeci“, care apare de multe ori în babiloniene, legendele persane și grecești ca sinonim pentru un număr mare. Babilonienii l-au considerat numărul lui Dumnezeu, trei sute de coți în înălțime a avut un idol de aur din templul babilonian regelui Nabucodonosor. Mai târziu, cu aceeași valoare (fără număr) având multipli de 60: 300, 360. De-a lungul timpului, numărul 60 în Babilon a stat la baza sistemului șaizecelea de calcul, ale căror urme au supraviețuit în măsurarea timpului și a unghiurilor.
Limita următoare în slavii au fost numărul de „întuneric“ (vechii greci - multitudinea) de 10 000, și Outland - „intuneric, mai multe mii“ de 100 de milioane. Slavii, de asemenea, utilizat și alt sistem numărul (așa-numitul „număr mare“ sau „scor mare“). In acest sistem, "întuneric" este egal cu 106, "legiune" - 1012 "leodr" - 1024, "Raven" - 1048, "punte" - a adăugat 1096 și apoi că un număr mai mare nu există.
În lumea antică avansat cel mai Arhimede (III ien.) În „calculul boabe de nisip“ - până la numărul 10 ridicat la o putere 8h1016. și Zenon Eleysky (secolul IV î.Hr. ...) în paradoxurile - la infinit.
Funcțiile de numere naturale
Numerele naturale au două funcții principale:
caracteristică a numărului de subiecți;
Caracteristicile despre obiectele plasate într-un rând.
În conformitate cu aceste caracteristici a apărut conceptul de numere ordinale (primul, al doilea, etc.) și cuantificarea numărului (unu, doi, etc.).
Lung și greu pentru a ajunge la umanitatea primul nivel al numerelor de generalizare. O sută de secole a fost nevoie pentru a construi cel mai mare număr de numere întregi scurte de la unu la infinit: 1, 2. naturale, deoarece acestea au fost desemnate (simulate) reale indivizibile obiecte, oameni, animale, lucruri.
La originea fracțiilor
Odată cu apariția unor reprezentări de întregi și au existat reprezentări ale părți ale unității, mai exact, despre părțile unui anumit subiect. Odată cu apariția unui număr natural n a apărut a fracțiunilor de forma 1 / n, care se numește alicotul, generic sau de bază.
Pentru a clarifica problema originii împușcat, nu trebuie să se oprească pe cont, iar pe celelalte procese care au apărut din cele mai vechi timpuri - pe măsurarea. Punct de vedere istoric, orice fracțiune din procesul de măsurare.
În centrul oricărei măsurători este întotdeauna o anumită cantitate (lungime, volum, greutate, etc). Nevoia de măsurători mai precise a condus la faptul că unitățile inițiale de măsură a început să se împartă în 2, 3 sau mai multe părți. unitate de măsură Finer, care a fost obținută ca rezultat al fragmentării, având în vedere un nume unic, iar valorile măsurate au această unitate mai mici.
Astfel, a luat naștere prima fracție specifică a anumitor părți ale unor măsuri specifice. Doar mult mai târziu numele de fracțiuni specifice au început să denote aceeași cele mai multe dintre celelalte variabile, și apoi abstract împușcat.
Fracții în Roma antică
Romani utilizate în principal numai pentru fracțiuni specifice, care înlocuiesc subsecțiuni abstracte ale măsurilor utilizate. S-au oprit atenția asupra ca „fund“, pe care romanii a servit ca unitate de bază de măsurare a greutății, precum și unitatea monetară. Ass a fost împărțit în douăsprezece părți - uncii. Dintre acestea, îngrămădite toate fracțiunile cu un numitor de 12, adică, 1/12, 2/12, 3/12.
Astfel a apărut fracțiunile duodecimal romane, adică o fracțiune a cărei numitor a fost întotdeauna numărul 12. În schimb 1/12 Romani a spus „o uncie“, 5/12 - „Cinci uncii,“ etc. Trei uncii numit al patrulea, patru uncii - al treilea, șase uncii - jumătate.
Acum, „fund“ - lira spițer.
Fracțiunile în Egiptul antic
Prima fracție, care sa întâlnit poporul a fost, probabil, jumătate. Acesta a fost urmat de 1/4, 1/8. apoi 1/3. 1/6, etc. care este cea mai simplă fracțiune, proporția întregului, numite fracții simple sau majore. Ei numărătorul este întotdeauna unitatea. Unele popoare antice și, în primul rând, egiptenii au exprimat orice fracție ca suma doar principalele fracțiuni. Doar mult mai târziu grecii, apoi indienii și alte popoare care vin în folosință, iar forma generală a unei fracții, numită obișnuită, în care numărătorul și numitorul poate fi orice numere naturale.