Care sunt cele două bucăți pătrate în orice dimensiune nu poate fi egal

Skr gama size = pi * r * 2 (elipsă S = pi * R * r) și întrucât pi - număr irațional, adică valoarea sa nu poate fi exprimată cu exactitate ca fracție m / n, unde m și n - întregi. Prin urmare, reprezentarea sa zecimală nu se termină niciodată și nu este periodică. Irationalitatea pi a fost demonstrată pentru prima dată de Johann Lambert în 1761

Ie cât de mulți nu trageți de cauciuc (pi) va fi în continuare o întindere.

În acest caz, va fi corect și există dovezi că aceasta este legată de numărul pi, această zonă a cercului (elipsa), precum și orice altă formă: un cerc și un paralelogram, un cerc și un pătrat, cerc, triunghi, cerc, și poligon.

Răspunsul este greșit, dar întrebarea nu are nici un sens. Zona de un cerc și un pătrat sunt egale, ca și aria oricărei alte forme! Această geometrie manual școlar. Prin „cvadratura cercului“ întrebarea nu are absolut nimic de-a face. Ca irațională (sau, mai degrabă, transcendența) a numărului „pi“. 7 luni în urmă -

răspuns corect la această întrebare: cele două cifre care nu vor fi niciodată egale în mărime - este un cerc, și orice figură înscrisă într-un cerc, indiferent dacă acesta este un pătrat sau un triunghi, sau n-ugolnik.Prichom. n-gon, n tinde la infinit este aproape în mărime la suprafața unui cerc, dar răspunsul nu sravnyatsya.A la o întrebare, nu prinde suprafața unui cerc, iar zona kvadrata.I este așa-numita problemă de cuadratura kruga.Kotoraya este de a construi o o busolă și un pătrat conducător a cărui suprafață este egală cu un anumit cerc. Aceasta este una dintre cele mai cunoscute probleme nerezolvate.

Toate primele trei răspunsuri au o soluție.

Și zona de pătrat, iar cercul nu va fi niciodată egal.

Nici una dintre opțiuni nu este răspunsul corect. Da, problema cvadratura cercului nu poate fi rezolvată cu rigla și compasul - este adevărat. Dar poate fi rezolvată prin quadratrix (puteți vedea cum este în Wikipedia). Este posibil să se construiască și taie lungimea rădăcinii Pi, și un pătrat cu latura de rădăcina pătrată a lui Pi. Suprafața acestui pătrat este - Pi. Faptul că suprafața unui cerc este egală cu partea 1.

Această „sarcină“ nu are nici un sens, nu există soluții. Este ca și cum ați fi întrebat: „Cât de mulți dintre factorii putem extinde numărul 1 Alegeți răspunsul corect: 1) în două, 2) de trei, 3) în patru, 4) 0.5.

Iată ce scrie el.

Și apoi el explică modul în care problema confunda compilatoare, ca să spunem așa, având în vedere „sarcini“:

Care sunt cele două bucăți pătrate în orice dimensiune nu poate fi egal

Care sunt cele două bucăți pătrate în orice dimensiune nu poate fi egal

Există un sentiment că una dintre variantele de răspuns în acest caz este pierdut printr-o supraveghere mică - Eu cred că această opțiune nedoupomyanuty și pare să fie adevărat în a răspunde la această întrebare test. Această versiune a „Cercul și Piața“ - zona cercului și pătrat, în orice caz, nu poate fi la fel din cauza prezenței de unghiuri și arce de la unul pe altul.

articole similare