Școală de muzică №146 Perm
Unul dintre scopurile educației matematice, reflectat în componenta federală a standardului de stat în matematică, este dezvoltarea intelectuală a studenților.
Tema "Divizibilitatea numerelor. Numerele simple și compuse "este unul dintre acele subiecte care, începând cu clasa a 5-a, permit dezvoltarea într-o mai mare măsură a abilităților matematice ale copiilor. Lucrând în școală cu studii aprofundate ale matematicii, fizicii și informaticii, unde învățământul se desfășoară în clasa a VII-a, departamentul de matematică al școlii noastre este interesat să-i familiarizeze pe elevi cu 5-7 clase în detaliu. Încercăm să implementăm acest lucru în clasele de la școală pentru tinerii matematicieni (SCHM), precum și în tabăra regională de matematică de vară, unde, împreună cu profesorii școlii noastre, predau și eu. Am încercat să preiau sarcini interesante pentru elevii de la 5 la 11 ani. La urma urmei, elevii școlii noastre studiază acest subiect în funcție de program. Iar absolvenții școlii din ultimii 2 ani se întâlnesc cu sarcini pe această temă pe USE (în sarcini precum C6). Materialul teoretic în diferite cazuri pe care le consider în volume diferite.
Se spune că un număr natural a este divizibil printr-un număr natural b dacă există un număr natural c astfel încât a = bc. În acest scop, ei scriu: a b. În asta
Cazul b este numit divizor al unui a, iar a este un multiplu de b. Un număr natural este numit simplu. dacă el nu are divizoare,
diferit de el și de unul (de exemplu: 2, 3, 5, 7 etc.). Numărul se numește compozit. dacă nu este simplu. Unitatea nu este nici simplă, nici complexă.
Numărul n este divizibil cu un număr prim p dacă și numai dacă p are loc printre factorii primi în care n se descompune.
Cel mai mare divizor comun al a și b este cel mai mare număr care este simultan un divizor al lui a și un divizor al lui b, notat cu GCD (a; b) sau D (a; b).
Cel mai mic numar comun este cel mai mic numar care este divizibil atat prin a, cat si b este notat cu LCM (a; b) sau K (a; b).
Numerele a și b se consideră a fi relativ prime. dacă cel mai mare divizor comun este egal cu unul.
Școală de muzică №146 Perm
∙ În clasele de pe acest subiect, în funcție de vârsta studenților, locul și ora cursurilor, consider diferite sarcini. Selectez aceste sarcini, în principal din surse indicate la sfârșitul lucrării, inclusiv materialele din turneele regionale Perm ale tinerilor matematicieni din ultimii ani și materialele etapelor II și III ale Olimpiadei școlare ruse din matematică din trecut.
Folosesc următoarele sarcini pentru a conduce clasele în clasele a 5-a, a șasea, a șaptea în SCHUME 1 e, în timp ce trec subiectul "Divizibilitatea numerelor. Numere simple și compuse. Semne de divizibilitate. "
Activități orale.
1. La numărul 15 din stânga și din dreapta, adăugați o cifră, astfel încât numărul să fie împărțit la 15.
Răspuns: 1155, 3150, 4155, 6150, 7155, 9150.
2. La numărul 10 din stânga și din dreapta, atribuiți 1 cifră, astfel încât numărul să fie împărțit la 72.
3. Un număr este împărțit la 6 și 4. Este neapărat divizibil cu 24?
Răspuns: nu, de exemplu, 12.
4. găsiți cel mai mare număr natural, multiplu de 36, în înregistrarea căruia toate cifrele participă de 1 dată.
5. Având numărul 645 * 7235. Înlocuiți * cu un număr astfel încât numărul rezultat să fie un multiplu de 3. Răspuns: 1, 4, 7.
6. Având numărul 72 * 3 *. Înlocuiți * cu numere astfel încât numărul rezultat să fie un multiplu de 45. Răspuns: 72630, 72135.
Probleme semi-semnificative.
1. Câte duminici pot fi într-un an?
2. Într-o anumită lună, trei duminici au căzut pe numere paralele. Ce zi a săptămânii a fost a 7-a a acestei luni?
1 ШЮМ - Școala de Matematicieni Tinerilor - Școala de Sâmbătă la Școala №146