Construcția de secțiuni ale tetraedru și cutia

MPKFEN - secțiunea dorită.

Activitățile creative (carte de pe opțiunile):

Regulate piramida triunghiulara ABC prin vertex S și C S A secțiunea mid coaste a saniei piramidei paralele SB. La marginea AB se ia un punct F, astfel încât A F. F B = 3: 1. Prin punctul F și centrul C S margini drepte a avut loc. Va această linie este paralelă cu planul secțiunii?

AB C 1 - vedere în secțiune a unui paralelipiped dreptunghiular ABC D A 1 B 1 C 1 D 1. După punctul E, F. K, care sunt, respectiv punctele mediane ale muchiilor DD 1. 1. A 1 D 1 C 1 D includ a doua secțiune. Dovedeste triunghiurile E F K AB si C 1 sunt similare și setați unghiuri ale acestor triunghiuri sunt egale.

Lecții Linia de fund: Deci, trebuie să cunoască regulile de construcție a secțiunilor tetraedrului și caseta, examinarea punctelor de vedere în secțiune transversală, a rezolva probleme simple pe secțiuni de construcție. În lecția următoare vom continua să examineze acest subiect, ia în considerare sarcinile mai complexe.

Și acum să rezumăm lecția răspunzând la întrebările noastre tradiționale (numărul slide 24):

„Mi-a placut (nu iubit) Lecții pentru că ....“

„Astăzi, lecția am învățat ....“

„Vreau să ....“

„Am adăugat această lecție (e) să ...“

(Scoring pentru lecția.)

Sarcina acasă: revendicării 14 №105, 106. (număr de diapozitive 25)

Sarcină adițional la №105. Găsiți raportul în care MNK plan împarte marginea AB. dacă CN. ND = 2: 1, BM = MD și punctul K - mediana de mijloc AL ABC triunghi.

(Termină sarcina de execuție creativă.)

articole similare