Un debit recurent fără întârziere este un flux obișnuit. Fluxurile recurente cu întârziere pot fi neobișnuite. Se dovedește că debitul repetat staționar este cel mai simplu.
teletrafic flow call erlang
3.10 Cercetarea fluxului. Erlang Flows
Să fie un flux de apeluri, pentru care t1, t2, ... există momente de apeluri primite. Am ales din acest flux al apelului, utilizând următoarea procedură: apel ajunge la tk timp (k = 1, 2, ...), cu o probabilitate ρ este un nou fir și cu probabilitate (1sρ) este pierdut. Un nou flux de apeluri se numește cernut. Astfel, fluxul sitate este format dintr-un anumit flux, în care numărul aleator este pierdut apel, apelul următor este (cernute), și apoi din nou un număr aleator de apeluri care au aceeași lege de distribuție se pierde flux, apelul următor este dat, etc. Operația prin care se obține fluxul cernut se numește operațiunea de sitare recurentă. De asemenea, debitul obținut din fluxul recurent prin intermediul unei operații de cernere recurente este de asemenea recurent.
Dacă fluxul principal - cel mai simplu cu parametrul λ și că fiecare flux apel cern cu probabilitatea p și se pierde cu o probabilitate de (1-ρ), debitul va fi de asemenea proiectat cu cel mai simplu parametrul λρ. Rezultă o concluzie practică foarte importantă: dacă se ajunge la sistemul de comutare un flux simplu cu parametrul λ h este împărțit în zone, iar probabilitatea ca apelul de intrare a fluxului merge la direcția i-lea (i = 1,2, ..., h), este ρi, atunci fluxul direcției i este de asemenea cel mai simplu cu parametrul λρi.
Utilizare operație este diferită de cernerea recurentă, în care fluxul precis m apeluri, (m + 1) a pierdut - lea apel este cernută, apelurile pierdute apoi din nou, cu precizie și m (m + 1) - th cernute etc. Ca urmare a acestei operațiuni de cernere a celui mai simplu flux, se formează un așa numit debit Erlang din ordinul m. Dacă fiecare al treilea apel este salvat (cernut) în firul cel mai simplu, atunci se formează un flux Erlang de ordinul doi, fiecare al doilea apel fiind un debit Erlang în primul rând. Firește, cel mai simplu flux poate fi considerat ca un debit Erlang de ordinul zero.
În fluxurile Erlang de orice ordine, intervalele de timp dintre apeluri sunt independente și distribuite în conformitate cu aceeași lege, deoarece aceste intervale reprezintă suma aceluiași număr de intervale ale celui mai simplu flux. În acest sens, fluxurile Erlang sunt recurente. Așteptările M (Zm), dispersia D (Zm) și deviația standard sigma (Zm) intervalul de timp între apeluri în flux Erlang ordine m-lea sunt, respectiv,
Parametrul acestui flux
Rezultă din (28) și (29) că, pe măsură ce ordinea fluxului Erlang crește, așteptarea și varianța intervalului de timp dintre creșterea apelurilor și parametrul de curgere scade simultan. Fluxurile Erlang din ordinul m pentru diferite fluxuri m crează cu diferite grade ale aleatorității: de la cel mai simplu (m = 0) la determinist (m = ∞).