Prz matan 12 var

Dat fiind T este o funcție periodică a f (t)

Prz matan 12 var

Pentru a justifica posibilitatea extinderii lui f (t) într-o serie Fourier, se stabilește forma convergenței seriei Fourier la f (t).

Teorema lui Dirichlet: Dacă T este o funcție periodică a lui f (t), satisface condițiile Dirichlet pe un interval închis de lungime T:

Este continuă sau are un număr finit de puncte de discontinuitate de primul tip

Monotonul are fie un număr finit de maxime și minime

Seriile Fourier converg de-a lungul axei t și suma seriei Fourier este egală cu f (t) la toate punctele acestei funcții este continuă în punctul t0 de discontinuitate a funcțiilor primului tip f (t) este egală cu suma seriei Fourier a funcției f (t) satisface condițiile de convergență, în medie.

Lyapunov Simptom: Dacă T - funcția periodică f (t) îndeplinește condițiile de continuă și pătrat pe porțiuni integrabile, atunci seria Fourier medie pătratică converg spre f (t).

Construiți un grafic al sumei unei serii Fourier.

Prz matan 12 var

Reprezentați funcția dată cu o serie Fourier trigonometrică în avans:

b) calculați coeficienții seriei Fourier.

Coeficienți ai seriei Fourier

Extinderea trigonometrică a φ-ии într-o serie Fourier

Construiți spectrul de amplitudine și de fază a funcției.

Prz matan 12 var

Prz matan 12 var

Prz matan 12 var

Determinați numărul de armonici ai extinderii funcției într-o serie Fourier care conține în total nu mai puțin de 90% din energie.

Pentru a determina numărul de armonici care conțin în total nu mai puțin de 90% din energie, mai întâi se calculează energia introdusă de fiecare armonică separat în conformitate cu următoarea formulă:

Contribuția armonicilor la energie

Prz matan 12 var

Calculați eroarea între rădăcină și pătrat între funcția originală f (t) și suma parțială Fourier pentru t care aparține intervalului de întreținere.

Formula de calcul pentru eroarea medie-pătrată rădăcină:

Construiți graficele funcției date și suma parțială a seriei Fourier pentru valorile t care aparțin intervalului sarcinii f (t), luând numărul de armonici definite în clauza # 5.

Prz matan 12 var

Construiți un grafic al pătratului deviațiilor funcției și suma parțială a seriei pentru t din intervalul sarcinii f (t).

Prz matan 12 var

Pentru o funcție definită pe un interval finit, construiți o extensie periodică într-o manieră prescrisă.

Prz matan 12 var
[0.3] (echivalent)

Prz matan 12 var

Pentru a justifica posibilitatea extinderii lui f (t) într-o serie Fourier, se stabilește forma convergenței seriei Fourier la f (t).

Această funcție f (t) satisface condițiile din teorema lui Dirichlet:

Teorema lui Dirichlet: Dacă T este o funcție periodică a f (t), satisface condițiile Dirichlet pe un interval închis de lungime T:

Este continuă sau are un număr finit de puncte de discontinuitate de primul tip

Monotonul are fie un număr finit de maxime și minime

Seriile Fourier converg de-a lungul axei t și suma seriei Fourier este egală cu f (t) la toate punctele acestei funcții este continuă în punctul t0 de discontinuitate a funcțiilor primului tip f (t) este egală cu suma seriei Fourier a funcției f (t) satisface condițiile de convergență, în medie.

Teorema lui Weierstrass: dacă T este o funcție periodică a f (x) pe un interval închis. De exemplu [-T / 2, T / 2] îndeplinește condițiile de continuitate și f (-T / 2) = f (T / 2), atunci seria Fourier a trigonometric converg spre f (x) uniform.

Construiți un grafic al sumei unei serii Fourier.

Prz matan 12 var

Reprezentați funcția dată cu o serie Fourier trigonometrică în avans:

b) calculați coeficienții seriei Fourier

Coeficienți ai seriei Fourier

Extinderea trigonometrică a φ-ии într-o serie Fourier

Construiți spectrul de amplitudine și de fază a funcției.

Prz matan 12 var

Determinați numărul de armonici ai extinderii funcției într-o serie Fourier care conține în total nu mai puțin de 90% din energie.

Contribuția armonicilor la energie

Calculați eroarea între rădăcină și pătrat între funcția originală f (t) și suma parțială Fourier pentru t care aparține intervalului de întreținere.

Construiți graficele funcției date și suma parțială a seriei Fourier pentru valorile t care aparțin intervalului sarcinii f (t), luând numărul de armonici definite în clauza # 5.

Prz matan 12 var

Construiți un grafic al pătratului deviațiilor funcției și suma parțială a seriei pentru t din intervalul sarcinii f (t).

Prz matan 12 var