DSA a logaritmului urmează direct din definiția logaritmului.
Prin definiție. Logaritmul este un indicator al gradului în care trebuie ridicată baza pentru a obține numărul semnalului logaritmului:
Baza gradului trebuie să fie un număr pozitiv diferit de unul.
Când vă ridicați la orice putere a unui astfel de număr, întotdeauna obțineți un număr pozitiv.
Astfel, intervalul valorilor logaritmului admisibil (logaritmul ODZ)
constă în trei condiții:
1) Semnul logaritmului trebuie să fie un număr pozitiv:
2-3) În partea de jos a logaritmului ar trebui să existe un număr pozitiv diferit de unul:
Toate cele trei condiții trebuie îndeplinite simultan.
Astfel, pentru a găsi DSA a logaritmului
Este necesar să se rezolve un sistem de trei inegalități:
Dacă există un număr în partea de jos a logaritmului:
Logaritmul ODZ conține o singură condiție:
Dacă există un număr sub semnul logaritmic și o expresie cu o variabilă în partea de jos:
atunci trebuie să se scrie două condiții în intervalul valorilor admisibile:
Exemple de găsire a DSA a logaritmului sunt considerate separat.