Matrice și operații pe ele, matematică pe care îmi place

14. Matrice și operații asupra acestora *

Apoi vom lua în considerare matricele pătrate 2 \ ori2 și 3 \ ori3 (tabele pătrate cu numere cu două rânduri și trei coloane și trei rânduri și trei coloane). Tot ce se va spune este valabil și pentru matricile pătrunde de ordinul n.

Definiția. Se consideră că două matrici sunt egale dacă au aceleași elemente în aceleași locuri.

Definim suma a două matrici. lăsa

Apoi suma matricelor A și B este o matrice

produsul matricei A cu un număr real c este matricea

produsul șirului A ^ T = (a_1, a_2, \ ldots, a_n) prin coloana B = \ left (\ begin
b_1 \\ b_2 \\ \ vdots \\ b_n
\ end \ right) este numărul

produsul matricelor A și B este matricea

Aici _j este rândul jth al matricei A. B_i este coloana i a matricei B.

Proprietățile operațiilor de matrice

Multiplicarea matricelor nu este comutativă!

Proprietăți de multiplicare matrice

Definiția. Matricea unității este o matrice ale cărei elemente ale diagonalei principale sunt 1 și toate celelalte elemente sunt zerouri:

Evident, AE = EA = A.

1. Multiplicați matricele

3. Să demonstreze că rangul de produs al mai multor matrici nu este mai mare decât rangul fiecărei matrice multiplicate.

4. Dovada ca daca A si B sunt matrici patrate de aceeasi ordine si AB \ ne BA.

Articole similare