Inequality despre media aritmetică și media geometrică, algebra

Inegalitatea cu privire la media aritmetică și media geometrică (inequality Cauchy)

Media aritmetică a numerelor pozitive n nu este mai mică decât media geometrică.

și egalitatea este atinsă dacă și numai dacă

Un caz special al acestei inegalități, care conectează media aritmetică și media geometrică a două numere pozitive, a fost cunoscut din cele mai vechi timpuri. Cel mai adesea este dovedit folosind o interpretare geometrică.

Construim un cerc cu diametrul AB = a + b.

Din punctul arbitrar C al unui cerc, trageți CD-ul perpendicular pe diametru.

Prin proprietatea unui triunghi cu unghi drept, înălțimea făcută de hypotenuse. este egal cu media geometrică dintre proeminențele picioarelor și hipotenselor:

Conectăm punctul C cu centrul cercului, punctul O. CO este raza, ceea ce înseamnă că acesta este egal cu jumătate din diametru:

adică lungimea CO este egală cu media aritmetică a a și b.

În triunghiul drept, CD-ul COD este un catet, CO este hypotenuse.

Întrucât hypotenuse este întotdeauna mai mare decât piciorul. CO> CD, prin urmare, media aritmeticii a și b este mai mare decât media geometrică a acestora.

Inequality despre media aritmetică și media geometrică, algebra
D coincide cu punctul O,

dacă AO = BO, adică a = b.

(de la a> 0), iar în acest caz media aritmetică a a și b este egală cu media geometrică a acestora.

Astfel, media aritmetică a numerelor pozitive a și b nu este mai mică decât media geometrică.

După cum este necesar pentru a dovedi.

În cazul general, inegalitatea a fost dovedită de Cauchy.

Articole similare