perimetrul udate al fluxului - linia pe care patul de fluid este în contact cu suprafețele în secțiunea de viață. Lungimea acestei linii este notată cu litera c.
Perimetrul de curgere sub presiune umectată coincide cu perimetrul geometric, deoarece fluxul de lichid în contact cu toți pereții solizi.
fluxul R Raza hidraulică numită frecvent utilizat în valoare hidraulica reprezentând un raport de suprafață deschisă umectate perimetrului S c:
raza hidraulică va fi egală cu Când mișcarea de presiune în conducta circulară:
și anume sfert din diametrul sau jumătate din raza țevii.
Pentru curgerea liberă a secțiunii transversale dreptunghiulare cu dimensiunile razei hidraulic poate fi calculată conform formulei
Ecuația de continuitate și semnificația sa fizică
Atunci când cantitatea de flux constant de fluid care curge pe unitatea de timp, în curentul prin secțiunea tubului. cantitate egală de fluid care curge printr-o secțiune transversală (fig. 6.1). În cazul în care secțiunea transversală a curentului tubului este infinitezimal, se poate presupune că viteza fluidului este aceeași în toate punctele de aceeași secțiune transversală. Masa de lichid care curge prin timpul secțiunii transversale a tubului, dat de expresia:
în care - densitatea lichidului, și S - aria secțiunii transversale a tubului. În cazul masei flux constant va fi aceeași pentru toate secțiunile transversale ale tubului de curgere. Dacă luăm cele două secțiuni, care sunt pătrate și. putem scrie:
Dacă această egalitate nu este respectat, greutatea lichidului între secțiunile și-au schimbat în timp. Dar acest lucru contrazice legea conservării masei și ipoteza de curgere la starea de echilibru. În cazul în care lichidul este incompresibil, atunci. și această relație devine:
Acest raport se numește ecuația de continuitate. Sensul său fizic este faptul că lichidul nu este stocat, care este, pentru același interval de timp, în tubul de curent care curge în și o cantitate egală de lichid. Viteza fluidului în același tub mai mare curent în cazul în care suprafață mai mică în secțiune transversală a tubului.
ecuația Bernoulli pentru fluide ideale și viscoase
Ideal de curgere a fluidului, așa cum a fost definit anterior, poate fi reprezentat printr-un set de fluxuri elementare de lichid. Vitezele variază pe secțiunea transversală a fluxului, și în mijlocul celui mai mare debit, și scad la periferie (modelul de curgere cu jet). Acest lucru înseamnă că diferitele fluxuri într-o singură secțiune au valori diferite ale energiei cinetice. Rezultă că energia cinetică, numărate folosind ratele de fluxuri elementare uS. și energia cinetică, numărate folosind o valoare a unui debit mediu de viteză V. vor avea valori diferite. Să vedem ce diferența este. Energia cinetică a fluxurilor elementare este egal cu:
unde - masa densitatea fluidului. care curge prin zona deschisă a fluxurilor elementare, la o rată de timp dt. care este egală cu:
Integrarea expresie. o expresie pentru energia cinetică a curgerii unui fluid ideal.
Înainte de a arde ecuația Bernoulli pentru curgerea lichidului vâscos trebuie prescrisă prin două puncte. Fluxul de lichid este diferit de fluxuri elementare că are o reală dimensiuni transversale, care pot fi destul de mărime considerabilă. Distribuția presiunii și vitezei pe secțiunea transversală a fluxului poate fi inegale.
Luați în considerare distribuția presiunii. În planul perpendicular pe direcția de mișcare, presiunea hidrodinamică este distribuit legea hidrostatică. În acest sens, avem condiția:
și anume valoarea mărcii și înălțimea piezometrică z la toate punctele din secțiunea transversală de curgere rămâne aceeași, cu toate modificările pentru diferite secțiuni.
Datorită faptului că distribuția vitezei U locale în secțiunea transversală de curgere planul inegală și, în cele mai multe cazuri, nu se cunoaște, există dificultăți cu definiția energiei cinetice a fluxului, adică, al treilea termen în ecuația Bernoulli. Prin urmare, vom introduce un coeficient de corecție ±, care este raportul dintre energia cinetică a fluxului real la energia cinetică calculată din viteza medie într-o secțiune. ± ajustare numit coeficient de energie cinetică sau factor al debitului Coriolis, și reprezintă distribuția inegală a vitezei de curgere locală, la secțiunea transversală.
Pentru cele mai frecvente cazuri, valorile de mișcare fluid ± următor: curgerea laminară într-un tub circular ± = 2, turbulent - depinde de modul și presupune valoarea ± = 1,1 1,3. De obicei ± determinată empiric.
Raportul Coriolis este raportul dintre energia cinetică reală la energia cinetică a fluxului calculată din viteza medie. Astfel, factorul de corecție ia în considerare neuniformitatea vitezei a secțiunii de curgere rapidă.
Coeficientul de Coriolis depinde de modul de curgere a fluidului.
Pentru laminară = 2.
Pentru turbulent = 1,13 ... 1,15